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The variational principle is used to obtain solutions to Schr6dinger's equation for a particle 
in the Yukawa potential. A Laguerre basis set extended by an extra function is employed in 
the calculations. A special parameter used in the extra function and its relation with the systems 
energy results in utilizing an auto-coherent scheme. Considerable improvement seems to be 
achieved especially in the critical region where the screening parameter approaches its thresh- 
old value. 

1. Introduct ion  

The Schr6dinger  equat ion  for a particle bound  in a screened C o u l o m b  potent ia l  
is given by 

{--21V2 -rl  V(7'r) } ~ =  E~'; ~geg(, (1.1) 

where 3( is the Hilbert  space of  the problem and V(% r) is a screening funct ion  
with a screening pa ramete r  7. I f  the funct ion is chosen so that  it is dependent  solely 
on the radial variable r, one arrives at the radial fo rm of(1.1) 

{ l d 2 1 d  l ( l + l )  l v ( % r ) }  2 dr 2 r dr ~ 2r 2 r (1.2) 

The  wave funct ions of  (1.1) and  (1.2) are related to each other  by spherical ha rmo-  
nics and  l is the azimuthal  q u a n t u m  number .  The  boundary  condi t ions o f  (1.2) are 
the cont inui ty,  the regulari ty and the vanishing behavior  of  ~, as r approaches  infi- 
laity. The  equa t ion  given by (1.2) is equivalent  to solving the eigenvalue p rob lem 
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of a self-adjoint operator under the weight r 2. This problem will yield a countably 
infinite or a finite number of discrete eigenvalues. The eigenfunctions correspond- 
ing to these eigenvalues belong to the set of functions that are continuous every- 
where on the domain of rc[0, c~) and are square-integrable in the interval [0, 00) 
under the weight r 2. On the other hand, the decaying behavior of the potential as 
r ~ oo implies that E will have both continuous and discrete spectra. The eigenfunc, 
tions corresponding to the continuous spectrum show a fluctuating slow decay 
behavior as r approaches infinity. In other words they belong to the class of func- 
tions which are square-integrable to the distribution (i.e. the delta function). 

The screening function is often chosen so that it is finite in the domain r e [0, 00) 
and that as r -~ oo it approaches a constant value. Generally speaking, V is chosen 
so as to yield a constant for 7 = 0. For example, in the case of the Yukawa poten- 
tial [1], 

V(7, r ) = e  -Tr (1.3) 

the afore-mentioned limits will be as follows: 

V(O,r) = 1, (1.4) 

- -  0 .  (1 .5 )  

In other words for -y = 0, (1.2) will become the electronic Schr6dinger equation 
for a hydrogen-like atom, the solution of which can be found in any relevant text- 
book. On the other hand if'), is positive (i.e. not zero) the solutions of(1.2) are by no 
means trivial. The particle in question is under the effect of the central force field 
created by other charged particles. The strength of this field is determined by the 
size of the screening parameter. The larger the value of 7 the heavier the screening 
and the less similar the system is to the hydrogen atom. 

When q, is altered from zero in very small increments, the hydrogeni¢ spectrum 
starts to move towards the continuum. And the number of the discrete states whose 
corresponding energies are negative immediately drops to a finite number. This is 
due to the fact that an infinite number of discrete states are pushed into the continu- 
ous spectrum. Obviously an accompanying structural change in the eigenfunctions 
of the problem occurs. The 7 values which create these changes are named "criti- 
cal" or "threshold" values of the screening parameter and to every state there cor- 
responds a specific such value. 

The Schr6dinger equation with its screening function chosen as that proposed 
by Yukawa is perhaps the most commonly used test model to investigate the spec- 
tral structure of the screening phenomena. 

The Yukawa potential arises naturally as the position-space version of the solu- 
tion of the Klein-Gordon equation for a static meson field [1,2]. It was the deuteron 
problem which inspired the first solutions to the corresponding eigenvalue equa- 
tion. It is also commonly known in plasma physics with the name "Debye-Hiickel" 
potential and represents the effect of the plasma sea on localized two-particle inter- 
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actions [3-7]. In the calculation of the energy levels of impurity centers in doped 
semi-conductors the Debye-Hiickel potential also approximates the Thomas- 
Fermi potential [8,9]. The Yukawa potential, together with Hulten's [10] and the 
exponential, plays an important role as a good test case in potential scattering 
studies, too. In quantum chemistry the effect of the core electrons on the valence 
electrons can be modelled via a linear combination of Yukawa or like potentials. To 
summarize an abundant literature on screened Coulomb potentials, it can be stated 
that the Yukawa potential is perhaps the most abundantly used formalism to 
represent a static radial shielding of a Coulomb potential. 

Various approaches have been suggested to solving the eigenvalue problem asso- 
ciated with the corresponding Schr6dinger equation having Yukawa or similar 
potentials. An abundant number of these use the variational [4, 5,8-14] and the per- 
turbational [4-6,11,12,15-21] techniques. Group theoretical approaches have also 
been employed by quite a few authors [22-24]. Direct numerical integration of the 
relevant Schr6dinger equation has been reasonably successful, too [25-30]. Regge 
trajectories were determined via this means or by using continued-fraction expan- 
sions. Recently developed algebraic techniques were only partly successfull in 
determining ground state eigenvalues [31,32]. One of the most accurate energy 
values was given by Vrscay [19] in his recent attempt to analyze the behavior of the 
Pad~ approximants used by Lai [17]. The energy values were given to twenty deci- 
mal points for a sizeable screening domain for the 1 s and the 2s states with obvious 
loss of accuracy for large screening parameters of the 2p state. A multiple-preci- 
sion floating-point arithmetic package was used to get these results and moreover 
the Stieltjes behavior of Pad6 series assumed by Lai has proven to be false; leaving 
open the questions as to when and where the Pad6 approximant sequences of Lai 
will converge. An alternative route to solving the Schr6dinger equation with 
Yukawa potential has been to approximate these potentials, as best as one can, 
with other potentials that can either be analytically solved or are relatively easier to 
tackle. One such work of considerable interest is that of Dutt et al. [33]. The 
Yukawa potential, together with the angularly dependent term is approximated by 
an Eckar [34] type potential, extending the Eckar-Weizel [3] approximation to 
the non-zero angular momentum states. The closeness of their energies to Yukawa 
energies are certainly encouraging. Lam and Varshni [11,12] followed by Dunlap 
and Armstrong [35] use the Hulten potential to approximate the l = 0 states of the 
Yukawa potential. Their results seems to fail quite badly as the screening para- 
meter approaches its critical value. 

The present authors have been involved in research on Yukawa potential for 
some time. Besides application of algebraic techniques [31,32] to Yukawa poten- 
tial; perturbative [20,21] and variational [36] methods were also employed. A 
hydrogen-like operator was perturbed by a bounded operator in ref. [20,21]. An 
expansion in terms ofa Laguerre basis set was employed to obtain the inverse of the 
operator. The results obtained are accurate to thirty decimal points for relatively 
low 7 values. Chose to the critical regions, however, there is a quick loss of accu- 
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racy. Nevertheless, this partial success has led to utilizing Laguerre polynomials 
as a basis set in a variational treatment. These variational results were of similar 
nature and even slightly better in the critical region. A basis set comparison with 
the Eckart set showed that these were most promising in the critical region. 

Eigenfunctions corresponding to eigenvalues away from the threshold are likely 
to be characterized quite well by a Laguerre set since these eigenfunctions will be 
most effective in the region where r = 0 and since the Laguerre polynomials are 
made up of powers of r. Therefore this basis set will represent the behavior of the 
exact solution around r = 0 rather well but will gradually loose its power as r 
increases. Approaching the threshold value implies that the function to be charac- 
terized is dominant in the region away from r = 0 where the Laguerre set has lost its 
effectiveness. This naturally implies that to get reasonable eigenfunctions and 
eigenvalues corresponding to screening parameters close to the threshold value, the 
basis set to be utilized must be extended by function(s) that can mimic the decaying 
behavior of the exact wave function. 

In fact one of the present authors has used a rather similar approach to solve an 
eigenvalue problem which gives the critical values of the screening parameter [37]. 
There eq. (1.2) of the present paper was converted to a weighted eigenvalue pro- 
blem after setting E equal to zero and utilizing a scaling transformation which 
leaves the screening function independent of the screening parameter. This created 
a proportionality constant for the potential term, the value of which depended on 
the critical value under investigation. Therefore the potential term became a 
weight-function for the eigenvalue problem of the critical values. The numerical 
solution of this eigenvalue problem could only be effectively realized by using an 
extended function in addition to Laguerre polynomials. 

The formulation of the scheme will be covered in section 2, followed in sec- 
tion 3 by analytic evaluation of the matrix elements employed. Sections 4 and 5 will 
consecutively include results and concluding remarks. 

2. Formulat ion o f  the scheme 

The variational treatment of the eigenvalue problem given by (1.2) using a trial 
functions, ~'T as a linear combination of a set of~lii's such that 

m 

q/T = ~ ci~i (2.1) 
i=0 

will lead to the matrix eigenvalue problem 

Ac = EBc,  (2.2) 

where A is the Hamiltonian matrix given by 

/o" At1 = #iH#jr 2 dr (2.3) 
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in terms of the Hamiltonian operator H,  defined as 

1 d 2 1 d l(l+ 1) 1 
H - -  2 d r  2 r d r  ~- 2r ~ rV(%r )  (2.4) 

and B is the weight matrix (known also as the overlap matrix) given by 

/7 Bij = ~ i~ j r  2 d r .  (2.5) 

The vector c contains the expansion coefficients ci. If ~bi's are chosen so that 
they are orthonormal under the weight r 2, matrix B will turn into an (m + 1) 
x (m + 1) unit matrix and the weighted eigenvalue problem will turn into the 
unweighted eigenvalue problem 

Ac = Ec (2.6) 

the advantages of which will be quite apparent within the context of the auto- 
coherent scheme to be discussed. The considerable success of the Laguerre basis set 
of ref. [36] suggests using basically the same set for the variational calculations in 
hand. Namely, ~i's will be chosen as 

¢i = 2giyle~L2t+E(Y), (2.7) 

where y = 2(r and ff is a convergence acceleration parameter [36]. The set will be 
orthonormal under the weight r 2 and the normalization factor is 

f / , ] '  N, = (2if) I ( i +  2l + 2)f " (2.8) 

As discussed in detail in the previous section however, this basis set is not appropri- 
ate for 3' values close the continuum threshold and it is necessary to reflect also 
the r = oo behavior of the exact solution of the equation (1.2) to the trial function to 
be utilized. To this end a perturbational approach can be developed. Defining a 
new parameter v, through the relation E = -u2/2,  eq. (1.2) can be rewritten in the 
form 

1 d 2 1 d l( l+ 1) +-2- ~ u = _ V ( v , r ) ~ ,  (2.9) 
2 dr 2 r dr { 2r 2 r 

where tr is later to be replaced by one. Choosing Ok'S independent of a, the follow- 
ing expansion can be suggested: 

oo 
~u = Z o'kO k . (2.10) 

k=0 

In doing so, it is kept in mind that for r -+  oo the potential will decay and the system 
will begin to characterize a free particle. Hence the relation 
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{ 1 1 d 2 1 d / ( /+1)+_~_  
2 dr 2 r dr t 2r 2 r 

Ok = - V('y, r) Ok-l , k >>.O, 0-1 = 0 ,  

(2.11) 

is achieved and for k = 0 a solution can be constructed in terms of the modified 
spherical Bessel functions. There will be two linearly independent solutions and the 
one with the decaying behavior for r ~ oo should be kept and the other discarded. 
This solution can be symbolically written as YoOo. The following equation will be 
achieved for 01: 

f 
oo x)  

01 = YlOo + Yo G(r,x) Oo(x) dx.  (2.12) 
x 

In this equation, G represents the Green function arising from the inversion of  the 
operator acting on Ok in eq. (2.11). It gives the decaying behavior to perturbative 
contributions. In general and specifically for l ¢ 0 values, G has a rather compli- 
cated structure but does, however, contain a finite number of elementary functions. 
If  the following definition is made: 

f :KOo - a(r,x)  V(%X) Oo(x)cb:, (2.13) 
x 

then the relation 

k 
Ok = Z Yi:Kk-io° (2.14) 

i=0 

will be obtained. As r ~ 0, J£ will have a polar singularity (at times a logarithmic 
one). The same is true for 00. Since the linear combination of 0k's can be used as a 
trial function, a function constructed as 

M 

= Z Yk3(kO0 (2.15) 
k=0 

can be used as the trial function. Here, the coefficients Irk should be chosen so 
that the function • will not  have a singularity at r = 0. The perturbational  
approach developed is however, highly costly due to the nested integrals it involves. 
As a first approximation M is taken as one and the one-dimensional integral 
obtained is approximated by a properly chosen function so as to ensure the regular- 
ity condition at the origin. 

In the Yukawa case an exponential type integral is encountered and replaced 
with its asymptotic form. An exponential parameter is used to characterize the 
errors arising from the asymptotic approximation of the integral and to keep the 
numerical convergence under control. 

Due to the costly nature of the integration procedure, the nested integral struc- 
ture is avoided by utilizing an extended Laguerre basis set which is composed of the 
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m members  of  the Laguerre  basis set augmented  by a funct ion chosen via the above 
discussion. The per turbat ional  analysis suggests that  the extra funct ion contains a 
combina t ion  of  Modif ied Bessel Funct ions  [38] so as to yield a decaying behavior  as 
r approaches  infinity. The Bessels will have (ur) as a rguments  so that  the factor  
e -ur appears  in the structure of  the extra function,  where u is related to the eigen- 
funct ions as stated before. This linear combina t ion  can be convenient ly rewrit ten in 
the fo rm 

- ~ r ~  (t + p ) !  
e D_2~_0 p ~ i  22)-3[ (2ur) -0'+1) . (2.16) 

Al though  this will have the correct  behavior  as r--,'-oo, it will not  be regular  at 
r = 0. Therefore,  to get an extra funct ion with the correct  behavior  not  only at infi- 
nity but  also at zero, (2.16) has to be mult ipl ied by a factor which will tend to one 
as r---* oe and will have an overall effect of  r t on the extra funct ion at r = 0. This 
factor  should preferably contain the potential  funct ion V(7, r) and  be chosen such 
that  the relevant integrals are reasonably easy to tackle. The  funct ion defined as 

~5 = ~De -ur ~ P ! (2ur) -(e+l) [1 - e-Ur] 2t+1 , (2.17) 

where :D is a normal iza t ion constant  and # a pa ramete r  related to 3, fulfills these 
requirements  and was utilized as an augmenta t ion  to the Laguerre  basis set of(2.7)  
for the Y u k a w a  case. 

To ensure an unweighted matr ix eigenvalue problem rather  than a weighted 
one, the extra funct ion is to be chosen by G r a m - S c h m i d t  o r thonormal iza t ion  of  
to all the rn Laguerre  bases. Tha t  is, 

I m-1 
~m = 3gm ~ -  Z f l i ~ i  , (2.18) 

i=0 
where 

/0 fli = ~;r  2 dr (2.19) 

and ?gin is the relevant normal iza t ion  factor given by 

1 m-1 z - 1 / 2  3-2.1 ~= --i.v fl, j . (2.20) 

Hence the r -~ oo behavior  of  the radial Schr6dinger  equa t ion  with the Y u k a w a  
potent ia l  suggests that  the extra funct ion ¢~ has a mult ipl icat ive factor  e-"9 Unl ike  
the pa ramete r  a,  u is not  a convergence accelerating pa ramete r  but  has to be 
related to energy by the formula  
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E = @ 2 .  (2.21 

Note that  u is always positive for discrete states and the corresponding energy 
is always negative. To proceed with a variational scheme by using augmented basis 
set composed o f m  Laguerre basis functions plus the extra function, one has to start 
with assigning a specific value to the parameter u. Since the 7 = 0 case corresponds 
to the hydrogenic a tom and 7or to an energy value of zero, u has to lie in (0, 1] for 
the ground state. Given a u value, the variational matrix A can be constructed, 
diagonalized and an E value can be obtained. This E can now be used to reconstruct 
a new starting u value and so on. This procedure is to be repeated until consecutive 
E values are consistent to within a previously specified e value. This is obviously 
an "auto-coherent  scheme". We preferred the word "auto-coherent"  to prevent 
any misinterpretation and confusion instead of the word "self-consistent" which is 
employed traditionally to imply certain group of methods. Since the augmented 
basis set spans only a subspace of  the Hilbert space under consideration, m must  be 
incremented say by Am, and this process must  be repeated until auto-coherent E 
values stabilize to within a desired accuracy. Evidently one can talk about the auto- 
coherency of  a specific eigenstate and the interval for u will be narrowed as the 
higher eigenstates are seeked. 

3. Evaluation o f  the matrix elements 

The matrix A and B of  (2.2) have to be evaluated in three parts. First, the matrix 
elements corresponding to two bases, both of  which are Laguerre type, will be eval- 
uated (i.e. Ai, j and Bi, j where i, j = 0 , . . . ,  m - 1), followed by the case where only 
one of  the two bases is Laguerre type and the other is the extended basis (i.e. Ai,m 
and Bi,m or the symmetric elements Am,i and Bm,i where i = 0 , . . . ,  m - 1). Finally 
the diagonal elements A,,,,, and Bm~ will be given (i.e. the case that  corresponds to 

and ~b). 
To evaluate the first two cases, it is convenient to start by looking at the effect 

of  the Hamiltonian operator H ofeq. (2.4) on a function (i, defined as 

~i = JIqyle-Y/2L~ (Y) , (3.1) 

where J[ i  is a normalization constant, a is a positive integer related to the azi- 
muthal  quantum number / andy  is as defined in eq. (2.7). The result will be 

H { i = f 2 { - l  {i+2(i+l + l) {i+ [a-(2l + l)] ( i { i+[i+a][~] ' i -X)  y2 

V(%r) 
(3.2) 

r 

The choice of  the basis set given by (2.7) corresponds to an a value of  (2l + 2). 
This will require that in the evaluation of the A matrix of(2.3) all the terms of(3.2) 
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will survive leading to rather tedious integrations. An alternative route is to 
employ a basis set defined as 

= ~fiyte-Y/2L21+l(y), (3.3) 

which will be orthonormal under the weight r so that the normalization factor is 

N~ = (2() (i + 2l + 1)! (3.4) 

This means that an a value of (2l + 1) is used in (3.1) which causes the third term 
in (3.2) to drop out. This results in much easier matrix evaluations. 

The scheme followed will be to construct matrices ,~ and B in terms of the ~3i's 
of (3.3) corresponding to the matrices A and B of (2.3) and (2.4) which were defined 
in terms of~i 's of (2.7) and then using the linear transformation 

i 

• , =  (3.5) 
k=O 

obtain the final A matrix. 
turns out to be a tridiagonal matrix with relevant elements given as follows: 

Bi,i - ( i + l + 1) 

ff~i,i+l = - - ( 2 ( )  -1  [(i + 1)(i + 2l + 2)] 1/2 , 

Bi+l ,  i = Si , i+ 1 . (3.6) 

The matrix .~ on the other hand will give 
~2 _ 

Ai,  j - -  -~ Bi ,  j -[- (~ i , j  -- Xi, j ,  (3.7) 

where 2 is the potential part of the .~ matrix and is defined as 

v(7, r) dr. co ~ i  r J = (3.8) 

Recurrence relations for generalized Laguerre polynomials utilized in ~3i's lead to 
the recursion 

)~i+ld = [(i + 1)(i + 21 + 2)]-1/2{[(j + 1)(j + 2l + 2)]1/2)~i,j+1 

+ [ j ( j  + 2l + 1)]l/2~i,j_~ - [i(i + 2l + 1)]1/2~i_1d + 2(i - J ) x i ,  j ) .  

(3.9) 
This is valid for all non-negative i, j and if any of the indices are negative, the corre- 
sponding 2-1,j (or)2i,-1) should be taken as zero. 

Once the zeroth row (or equivalently column) of ~ is known, the whole matrix 
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can be easily constructed via the recursive relation above. The nature of the recur- 
sion requires the computation of twice the number of row elements then what is 
otherwise needed from a direct evaluation of the matrix. However, this method is 
not only computationally less time consuming and more accurate but is also quite 
general for screening functions of similar nature if the same Laguerre basis set is 
employed. In other words, the formulation developed so far in evaluating the A and 
13 matrices do not require a detailed knowledge of V(7, r) and is therefore reutiliz- 
able for potentials of similar nature. In short, it is integrals of the type 

/0 Y~o,j = ¢o V(7 'r )  ~jr2 dr (3.10) 
r 

that are to be further evaluated. For the Yukawa potential, they turn out to be 

-1  1 -yJ 
Xo,j = 3ffo3V} 4~ 2 (1 +~-~+2,+2 ' (3.11) 

where 

- ~ = ~ .  (3.12) 

To proceed with matrix elements of the type Am,i and B,,,,i it is worth noting that 
(3.2) will be utilized. Once again, it is more convenient to use ~i's rather than 4~i's. 
Therefore, it is matrix elements 

/0 Am,i = ~ i  r2 dr (3.13) 

and 

f0 ° /3m,i = ~¢ir 2 dr (3.14) 

that have to be calculated. Then the transformation (3.5) followed by the Gram-  
Schmidt procedure (2.18) will give the corresponding A,,,i and Bin,i, the latter of 
which will yield a B matrix which will be the (m + 1) x (m + 1) unit matrix. 

In evaluating the relevant integrals it is more convenient to rewrite q~ in terms 
ofy instead ofr. 

/ I e - # y )  21+1 
v-" (l_+_p)! .,.,_ ,t-p -Jr (1 - (3.15) 

= ~) Df=oP!(l_p)! ~zvy) e yl+l 

The parameters ff and/2 are defined as 
// 

v = 2 - ( '  (3.16) 

/ 2 = ~ ,  (3.17) 
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and the new normalization constant ~ absorbs all the relevant factors under the 
weight r 2. 

The integrals in question can be easily evaluated by employing the explicit 
expression for the Laguerre polynomials [39] appearing in ~bi's and utilizing a bino- 
mial expansion for the last term in ~. The relevant matrix element turn out to be 

£ £  ( l+p)!  (2p),_p(-1) k ( i + 2 l + 1 ) !  
Bm,i = (2()-3~)~, (1-p) !p!  k! ( k + 2 1 +  1 ) ! ( i -k ) !  

k=0 p=0 

21+1 (21+1)! ( l + k + l - p ) ! ( - l )  t 

,=o t!(21 + 1 - t)! (~ + 0.5 + t/2) t+k+2-p ' 
(3.18) 

( 

i tm , i=(2{  - iBm,,l - + 2 ( i + I  + 1)(2()-3~)2qi 

£ ~ - ~  ( l+p)!  (20)/_p(-1) k ( i + 2 l + 1 ) !  

k=0 p=0 (l--p~.Pp{ k! " ( k + 2 l + l ) ! ( i - k ) !  

='+' (2t+ 1)! ' I, 
t=o t!(21 + 1 - t)! (p + 0.5 + tfi.) '+k+l-p J 

- 2 - -  i t ( l+p) !  _ t - p ( - 1 )  k ( i + 2 1 + 1 ) !  
- ( - 2 0  k! k)! 

k=o v=0 ~t - p).p. 

2~+1 (21+I)!  ( l + k - p ) ! ( - 1 )  t 
t!(21 + 1 -- t)! (~ + 0.5 + t~ + q)l+k+I-v " (3.19) t=0 

Finally the matrix elements of the type Am,,, and B,,v,, have to be calculated. To 
this end, the corresponding A, B matrix elements 

/7 ftm,m = ~ r  2 dr (3.20) 

and 

f0 ° 
B,,,m = ~ r  2 dr (3.21) 

have to be calculated. Then the Gram-Schmidt procedure (2.18) is to be applied, 
giving the elements Am,m and B,,,,m. Needless to say, since the function • is chosen to 
be normalized under the weight r 2 

/3,,,,,, = 1. (3.22) 
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On the other hand calculation of-4,.,m is more difficult. To this end the following 
definition is made 

f0  ° - e- Y) s ~2s, t(T,r/)= e -ry(1 y, dy. (3.23) 

The ff2s,t(T , 77) integrals to be utilized in matrix element -A,,,m and in ~ require that 
s > t. This leads to the recursive relation 

S 
f2s, t+l(T,r/) = ~r/f2s_l,t(T,r/) T-~-- t sr/J2s,t(r,r/) (3.24) 

valid for t ~> 1. To start the recursion, the equality 

S!(-- 1) s-k+l 
Os,1 (7, r/) = ~ -~= k)!k! ln(T + IS -- klr/) - In ~- (3.25) 

is to be used. Now for the case when t = 0, 

s!(-1)  k 1 
f2s,o('r, 77) = ~ (s - k)!k! (~- + r/k) " (3.26) 

k=0 

In terms of S2 integrals, A,,,m turns out to be 

~)2 , + (l+p)! .((_+ q)! (20)21_p_ q 

![0 + (2 /+  1)/212f241+2,p+q(2ff ,,/2) - (2l + 1) 2 

× [0 -I- (2/-+- 1)~]/2~"241+l,p+q(20 ,/2) 

+ ½(p + q + 2)[ff + (2 /+  1)/2]f-241+l,p+q+l (2~,/2) 

+ ½(2l + 1)2/22O4t,p+q(20,12) 

-½(21 + 1)/2(p + q + 2)g24t+l,p+q+l(20,/2) 

+ l ( p  2 + 1)(q + 1)f241+Z,p+q+Z(2ffl,/2)-J-½l(l + 1)g241+z,p+q+2(20,/2)} 
1 ~)2 t t ( l + p ) !  ( l + q ) !  

4(  2 Y~ ~ (l-p)!p! ( l - - - ~ !  (2O)2t-p-qo41+2'P+q(2O + ~'#) " 
p-----O q=O 

The normalization constant can be evaluated also in terms of the D integrals 

{ 1 ,  t (l +p), (_l_+_q), }-1/2 
¢f~ = ~ E E (2ff)21-p-q~-241+2,p+q(2~'~z) 

p=0 q=0 (l -- p)!p! (l -- q -~ !  

(3.27) 

(3.28) 
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4. Results 

The afore-mentioned auto-coherent scheme is applied to calculate first few s, p, 
d states of the Yukawa potential system for several screening parameters from 
between the hydrogenic case and the threshold of continuum. As was previously 
mentioned, a starting v value (or equivalently an E value) is required for each speci- 
fic 3' value and state under consideration. In the cases where an easy estimation of  
the energy to be evaluated is not possible, a rule of  thumb can be proposed. Take 
the converged energy value of  the Yukawa system with a 3, value closer to the 
hydrogenic limit and evaluate the corresponding v value. Calculate the correspond- 
ing eigenvalue of the variational matrix for a specific dimension. If the eigenvalue 
is negative then proceed with auto-coherency. If, on the other hand, it is positive 
then halve the energy estimate. Proceed with this until either the variational energy 
is negative or the halving process has been repeated to a prescribed number  (in 
our case 7). If  still a negative variational energy is not obtained then increase the 
dimension of the variational matrix by Am and pick up the original energy estimate 
used in the beginning of  the procedure for the previous dimension. Repeat  this pro- 
cedure until a negative value is obtained for the variational energy. When a nega- 
tive variational energy is obtained for a specific dimension proceed with the auto- 
coherent scheme until self-consistency is achieved to within a previously prescribed 
e tolerance (in our case often 1.0 x 10 -3°, in worse cases 1.0 x 10-28). Due to var- 
ious factors such as accumulation of  errors, ill-conditioned structures etc. the 
desired precision can never be reached within the given dimension. Hence the num- 
ber of  loops should be restricted to a pre-determined value (in our case 20). And  
somehow the situation should be recorded. In any case, if for a given dimension the 
variational or auto-coherent energy is negative the dimension is increased by Am 
and the variational or auto-coherent energies for the two consecutive dimensions 
are checked to agree with each other to within an e tolerance (in our case the two 
different tolerances were taken equal to each other) or if a pre-determined maxi- 
m u m  variational dimension is reached. Then this situation is also recorded. The 
value of the maximum variational dimension is chosen with regards to certain prop- 
erties of  the computat ional  medium such as machine precision and architecture. 
To save computat ional  time the variational matrix elements corresponding to the 
max imum number  of  Laguerre basis functions are to be calculated once and for all 
and stored. For  a given dimension the necessary matrix elements are taken from 
storage and only the terms corresponding to the extra function are reevaluated in 
the auto-coherent cycle. This attitude is obviously equally time-saving when dimen- 
sion is increased. 

Calculations were performed on a VAX/11-780 in For t ran  77 level quadruple 
precision arithmetic. Energy values calculated using the method  presented here are 
given in tables 1-6. The first three tables include the results for the ground and the 
first two excited states of the spherically symmetric case. The remaining three 
tables correspond to the l = 1 and l = 2 values. In all of these six tables, special 
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Table 1 
Calculated 1 s energies (E) of the Yukawa potential for various screening parameter values (7). 

7 E 

0.1 
0,5 
1.0 
1.1 
1.19 
1.1906 
1,1906124 
1.190612421 
1,19061242106 
1.19061242106061 

-0.407058 030613403 156754507070361 
-0,148 117021 889 932 616 711 758 220 725 
-0.010285789990017696804774215 315 
-0.002287244234053485463476080685 
-0.000000 103031 961 498 984588 555 542 
-0.000000000042378 868 850670237750 
-0.000000000000000 121 835 370047917 
-0.000000000000000000001 009 322977 
-0.000000000000000000000000 104807 
-0.000000000000000000000000000016 

Table 2 
Calculated 2s energies (E) of the Yukawa potential for various screening parameter values (7). 

7 E 

0,1 
0.2 
0,3 
0.31 
0.3102 
0.3102092 
0.310209282 
0.31020928271 
0.3102092827139 
0.310209282713935 

-0.049928 271 331 918 889234996681 037 
-0,012 107 865 195440464 385 855 372409 
-0,000091 602443 891 898 903 833 923471 
-0,000000037992565 724034305218 565 
-0.000000000074725 279 816 856 888985 
-0,000000000000005932937081 603 600 
-0,000000000000000000442009920526 
-0.000000000000000000000013440942 
-0.000000000000000000000000001 183 
-0.000000000000000000000000 000003 

Table 3 
Calculated 3s energies (E) of the Yukawa potential for various screening parameter values (7). 

7 E 

0.05 
0.1 
0.13 
0.1394 
0.13945 
0.13945029 
0.139450294 
0.139450294064 
0.13945029406417 
0.139450294064177 

-0.019 352 554 814 752 342 295 397 996 789 
-0.003 208 046 744 690 258 718 213 516 794 
-0.000 165 431 777 939 151 092 883 617 278 
- 0.000 000 004 513 313 401 080 808 571 675 
-0.000 000 000 000 154 261 175 736 537 687 
-0.000 000 000 000 000 029 465 737 439 451 
-0.000 000 000 000 000 000 007 347 581449 
-0.000 000 000 000 000 000 000 000 056 530 
-0.000 000 000 000 000 000 000 000 000 1 1 5  

-0.000 000 000 000 000 000 000 000 000 002 
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Table 4 
Calculated 2p energies (E) of the Yukawa potential for various screening parameter values (3'). 
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7 E 

0.1 
0.2 
0.22 
0.220216 
0.220216806 
0.220216806606 
0.220216806606573 
0.22021680660657304 
0.220216806606573040405 
0,220216806606573040405041 

-0.046534390486724608 386600840395 
-0.004101 646530784090388446610214 
-0.000028697244985229882829234829 
-0.000000 101 948 775 845 390 353 568 20 
-0,000000000076444099 543 794971 98 
-0.000000000000072212387886526 80 
-0,000000000000000005091 678061 43 
-0,000000000000000000051 041 66752 
-0.00000000000000000000000522501 
-0,000000000000000000000000058 36 

Table 5 
Calculated 3p energies (E) of the Yukawa potential for various screening parameter values (3"), 

3' E 

0.05 
0.1 
0.112 
0,11271 
0.112710498 
0,112710498359 
0,112710498359524 
0.112710498359524944 
0.112710498359524944973 
0.112710498359524944973972 

-0,018 557751 883405996604893 993 884 
-0,001 589001 525 867 560267558 634938 
-0.000050088 397 121 471 206 121 055'555 
-0.000000029651 104995 846226958 7 
-0.000000000021 296705 3436147946 
-0.000000000000031 091 836861 2862 
-0,000000000000000055969382 183 1 
-0.0000000000000000000576869370 
-0.000000000000000000000057 6265 
-0.0000000000000000000000000564 

Table 6 
Calculated 3d energies (E) of the Yukawa potential for various screening parameter values (3'). 

3' E 

0,05 
0.09 
0,091 
0.091345 
0.09134512 
0.091345120771 
0.091345120771732 
0.091345120771732184 
0,091345120771732184927 
0.09134512077173218492771 

-0.016 915 570 569 815 842 886 114 758 244 
-0,000 312 913 502 634 921 634 216 385 5 
-0,000 077 674 981 602 788 411 765 865 6 
-0,000 000 026 801 439 315 403 199 870 7 
-0,000 000 000 171 260 371 731 456 283 3 
-0,000 000 000 000 162 484 163 019 785 1 
-0,000 000 000 000 000 041 038 572 430 4 
-0.000 000 000 000 000 000 205 874 483 4 
-0,000 000 000 000 000 000 000 157 575 7 
-0~000 000 000 000 000 000 000 000 014 9 
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emphasis is given to the critical 7 region since this proved to be the most proble- 
matic part of the 7 domain in various previous calculations [19,32,36]. However, 
few examples of lower lying 7's are also included to show the obvious validity of the 
method in the whole 7 domain. Indeed the numerical results show that a non-negli- 
gible decrease in the variational dimension is observed even in the non-threshold 
regime when in addition to the Laguerre basis set an extra function is employed 
together with the proposed scheme. Although the choice of the parameter v is quite 
apparent and has led to the utilization of an auto-coherent scheme, selection of 
the parameters ¢ and # are not so straightforward. The parameter ( was in fact 
introduced for the sole purpose of convergence acceleration and can in principal be 
chosen as unity at the expense of fast convergence. However in the calculations, 
various reasonable (values were tested to increase the efficiency of the method. On 
the other hand choosing reasonable # values is somewhat troublesome. Although 
# is meant to be related to 7, the functional relation seems to be quite obscure since 
a preference to use only a single extra function was made to prevent overcomplicat- 
ing the method. It was finally decided to utilize the trial and error approach in 
choosing values for #. 

The tables show that the method is capable of obtaining quite small energy 
values often to orders of 10 -28. The investigation of these threshold regimes implies 
that energy (E) becomes proportional to (7 = 7or) and the proportionality con- 
stant seems to be zero for s states when 3' approaches 7or- In other words, energy 
seems to be expandable in positive powers of (7 - 7or). However the exact nature of 
such expansions awaits further research. 

5. Conc lud ing  remarks  

The extended basis set proposed, together with the auto-coherent scheme 
employed seems to be quite effective in determining the discrete spectra of the 
radial Schr6dinger equation with Yukawa potential. The improvement is quite 
apparent in the region close to the threshold of the continuous spectrum. This is 
perhaps somewhat conceivable since the extra function has been selected such that 
it not only reflects the behavior of the problem at r --~ 0 but also at r--~ e~. It is reas- 
suring to see that the critical 7 values given by Demiralp [37] agree perfectly with 
tables 1-6 of the present work. 

The proposed scheme seems to be quite general for radially screened Coulomb 
potentials of the same nature. Obviously an appropriate extra function has to be 
employed for each specific case within the guidelines given in section 2. Work is in 
progress on linear combination of Yukawa functions and on Gaussian type func- 
tions as alternative examples to test the validity of the method. 
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